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Abstract 
A bag-of-words based probabilistic classifier is trained using regularized logistic regression to 
detect vandalism in the English Wikipedia. Isotonic regression is used to calibrate the class 
membership probabilities. Learning curve, reliability, ROC, and cost analysis are performed. 

1. Motivation 
Wikipedia is a collaborative encyclopedia that anyone can edit and improve. Although it has been 
argued that this openness is one of the reasons for its success, it does allow some unscrupulous 
editors to introduce damaging edits. At the present time, most of these edits are identified and 
reverted either by human editors or by automated anti-vandal bots. 

Prominent anti-vandal bots such as ClueBot and VoABot II use lists of regular expressions and user 
blacklists to detect vandalism. These regular expression rules are created manually and are difficult 
to maintain. They detect only 30% of the committed vandalism. Their combined Recall was 
observed to be 33%, with a Precision of 100%.[1] 

Since 2008, machine learning algorithms have been attempted for this task,[1-5] but with limited 
success, leaving room for improvement. Moreover, the methods attempted have either utilized only 
a small sample of the available training data, or have generally not considered a cost-sensitive 
approach to model development. Such an approach aids in improving the true positives detection 
rate while maintaining low false positives. It is believed that a false positive would have a higher 
cost than a false negative in any practical application of the learning algorithm for this classification 
problem. 

2. Task 
An edit is a sequential revision to an article. A revert is an edit that returns the article to a previous 
version. That is, for versions , where  in chronological order, if , then k is a revert, 
and j is most likely a damaging edit. These events often occur when an article is vandalized, or when 
an edit does not follow the conventions of the article.[2] Not all damaging edits are immediately 
reverted, i.e. versions  may not immediately follow each other, although they usually do. 

Two categories of editors exist – anonymous and registered. Anonymous users commit most of the 
vandalism, although their overall legitimate contributions are rather small.[1] 

For each revision, the author, editorial comment and full text of the version of the page are 
available.[6] This data is used to create a classifier with low false positives that can predict whether 
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an edit by an anonymous editor is vandalism. This model can be utilized by an anti-vandal bot or 
other quality review software such as Huggle.[7] 

3. I/O behavior 

3.1. Input 
The quality of an edit is predicted using features of the edit, its author, and the article being 
edited.[2] The input to the classification system will be: 

• Changes to the article by the respective edit, expressed as a bag-of-words feature vector. 
• Metadata associated with the edit, including: 

o The edit summary statement, also expressed as a bag-of-words feature vector. 
o The IP address of the anonymous editor. 

All of the above inputs are merged into a single feature vector. 

3.2. Output 
The probabilistic classifier’s output is the predicted probability of the edit being vandalism. Based 
on a predetermined threshold, this probability is transformed into a class, predicting whether the 
respective edit is vandalism or not. 

4. Dataset 

4.1. Raw dataset transformation 
The most recent version of the required pages-meta-history.xml.bz2 dataset[8] for the task is from 
March 2008. Due to technical hurdles, creation of newer versions of this dataset by Wikimedia has 
been halted, although newer data can be queried incrementally using a web API. The size of the 
compressed version of the dataset is 147 GB. A sufficiently large sample of this dataset was used. 
Using the entire dataset was not feasible, as the implementation of the learning algorithm requires 
the training data to be held in memory. 

The XML dataset was parsed using a serial-access parser. Two parsers were evaluated: SAX (Simple 
API for XML), and ElementTree.[9] The latter functioned faster and requires less code. 

Interlacing revisions were scanned for reverts by comparing their article texts for equality, in order 
to detect vandalism. As indicated earlier, because anonymous editors commit most of the 
vandalism, only revisions by these editors were considered for further usage. Multiple successive 
revisions by the same editor were merged into a single revision. 

The article and comment text in each revision were tokenized into lowercased words. A custom 
regular expression based tokenizer was developed for this purpose. HTML tags and Wikipedia’s 
various syntactical elements were detected as words, as these are believed to be predictive. Long 
words containing repetitions of smaller words, such as “hihihi…” or “funfunfun…” were detected 
and split into their respectively contained smaller words. 



 

3 

For each article, the number of instances of each unique word in each revision was determined. 
Using all word counts of all revisions for model development, however, would have been 
computationally prohibitive. Besides, only those select few words whose counts are changed from 
one revision to the next are believed to contain the majority of the predictive value. For these 
reasons, only this subset of words was considered for further use. 

The differences in word counts from one revision to the next were calculated. These have values in 
the set of all integers. The ratio of the word counts of the two revisions was calculated as well, given 
that these ratios may add to the predictive value of the model. Using this ratio vector in addition to 
the difference vector resulted in slightly better performance, although this doubled the dataset size. 
These difference and ratio vectors are believed to have more predictive value than the two 
individual word count vectors themselves. In order to maintain and benefit from sparsity, i.e. non-
representation of zero values, the ratios were transformed to be centered on zero, and be in the set 
of all real numbers. 

While this representation results in a loss of information of the order of words, it allows text to be 
represented numerically, as this is necessary for many learning algorithms. Term-weighting 
techniques such as tf-idf (term frequency, inverse document frequency) which are commonly used 
were not applied, as it would result in an unacceptable loss of sparsity when computing the 
difference and ratio vectors. Word stemming was not deemed necessary, as different derivations of 
a stem may be differently predictive, given that the dataset is large. 

4.1.1. Example 
The following tables show an example demonstrating the aforementioned transformation of text 
into numerical vectors: 

Version Article text 

 Multiverses have been hypothesized in many fields of science, including cosmology, 
physics, and astronomy. 

 Multiverses have been hypothesized in cosmology, physics, astronomy, philosophy, and 
fiction, particularly in science fiction and fantasy. 
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Word 

Sparse word vectors 
   

(Difference) 
 

(Transformed ratio) 
, 3 5 2 1.6667 
. 1 1   
and 1 2 1 2.0 
astronomy 1 1   
been 1 1   
cosmology 1 1   
fantasy  1 1 1.0 
fiction  2 2 2.0 
fields 1  –1 –1.0 
have 1 1   
hypothesized 1 1   
in 1 2 1 2.0 
including 1  –1 –1.0 
many 1  –1 –1.0 
multiverses 1 1   
of 1  –1  
particularly  1 1 1.0 
philosophy  1 1 1.0 
physics 1 1   
science 1 1   
 

Positive and negative numbers in the above word vectors refer to addition and removal of words 
respectively. Zero values are not listed. 

4.1.2. Ancillary features 
Several potentially predictive metadata features for each revision were also computed. These are: 

• a Boolean (0 or 1) indicating whether the revision has any text or is empty, as revisions with 
no text are likely to be vandalism 

• a Boolean indicating whether the editor entered a summary comment, as one is usually not 
supplied for a revision that is vandalism 

• a Boolean indicating whether the editor marked the revision as a minor edit, as such 
revisions are unlikely to be vandalism 

• a Boolean indicating whether the revision was a change to the “External links” section of the 
article, as articles are often vandalized by adding a spam link to this section 

• the first of the four octets of the IPv4 address of the anonymous editor, as different values 
for this correspond to different geographical regions and may be differently predictive 

• the number of revisions in the collapsed sequence of successive revisions by the editor, 
minus one, as vandalism is likely to be just a single revision and not part of a sequence 

• the number of characters and words in the previous and current revision texts and 
comments, and their respective differences 

All of the transformed data was stored in a relational database. 
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4.2. Further transformation and scaling 
Additions and subtractions of a word were processed as two separate unsigned features, instead of 
as one signed feature. This resulted in slightly better performance without affecting the dataset 
size. 

Learning algorithms generally require that the values of features in the training data be in the range 
of 0 to 1 in order to achieve a reduced training time and optimal performance. Three scaling 
functions were experimented with: 

Scaling function name Formula for , with  Notes 
atan   
binary   
log-lin   derived from training data. 

If any test , then . 
 

As required, for each function, , and . For the binary function, because the 
difference and ratio vectors are equal after being scaled, only the difference vector needs to be 
used, and so the dataset size is halved. 

4.3. Dataset summary 
2,000,000 cases from the years 2001-08 were extracted from articles starting with the letters A to 
M. 1,585,397 unique words and an average of 104 words per case were extracted. Because 
additions and subtractions of words were processed as separate features, the number of features in 
the dataset is at least twice the number of unique words, or 3,170,794. Additionally, because atan 
and log-lin scaled datasets also include word ratio features, the number of features in them is at 
least four times the number of unique words, or 6,341,588. 

43% of the cases belong to the positive class, i.e. vandalism, and the remaining 57% to the negative 
class, i.e. not vandalism. The baseline accuracy and RMSE on the dataset are therefore 57% and 
66% respectively. 

The data was split into training, validation, and test sets. 50% of the cases were randomly assigned 
to the training set for use by the learning algorithm. 25% were randomly assigned to the validation 
set, to be used for model parameter optimization. The remaining 25% were assigned to the test set, 
to be used only for evaluating the performance of the chosen model. Cross-validation was not used 
for parameter optimization due to the large size of the datasets and the prohibitive cost of training 
multiple models. 

5. Model training and optimization 

5.1. Logistic regression training 
Given that the number of features in the training dataset is much larger than the number of cases, 
simple and highly regularized approaches are the methods of choice.[10] The Liblinear package was 
used to train L2-regularized logistic regression models using a trust region Newton method. Linear 
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methods such as logistic regression tend to work well in very high-dimensional applications 
including document classification.[11] Regularization aids in generalization.[12] Liblinear allows 
for large-scale linear classification, and is efficient on large datasets.[13] 

5.1.1. Formulation 
Given data x, weights , and class label y, if training instances are  and labels are 

, then  are estimated by 

 

where C > 0 is a penalty parameter.[12] 

5.1.2. Optimization 
As recommended by the authors of Liblinear, models were trained on the training set, with C varied 
on a log scale[14] from 2–5 to 211. A bias value  was used. The performance of each model was 
measured on both the training and the validation sets. 

Since the exact misclassification costs are not known as they depend upon the application in which 
the model is used, the RMSE (root mean squared error) metric was optimized instead. This is 
because MSE tends to be correlated with profit, and so it can be used when exact costs are 
unavailable.[15] This allows the desired misclassification costs to be selected at a later time by 
varying the threshold for classification.[16] 

5.2. Calibration 
MSE can be decomposed into two components, one measuring calibration and the other measuring 
refinement.[17] The calibration process improves the estimate of the probability that each test 
example is a member of the class of interest.[18] Isotonic regression using the PAV (pair-adjacent 
violators) algorithm was used to calibrate each model. It is a non-parametric form of regression for 
reducing calibration error in the class membership probabilities returned by the logistic model. 

Given predictions  from a model and true targets , the basic assumption in isotonic regression is 
that  where m is an isotonic (monotonically increasing) function. Given training set 

, 

 

PAV finds the stepwise-constant isotonic function that best fits the data according to a mean-
squared error criterion. It can be viewed as a binning algorithm where the position of the 
boundaries and the sizes of the bins are chosen according to how well the classifier ranks the 
examples.[15] 

Even though logistic regression models tend to be reasonably calibrated by default, they are known 
to still benefit from calibration in most cases.[11] If the learning algorithm does not overfit the 
training data, the same data can be used to learn a model for calibration, without risking that this 
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calibration model will overfit the training data.[15] Because it was observed that logistic regression 
did not overfit the training data greatly, specifically by an RMSE of 1.2% on average, the same 
training data was used to learn the calibration model. 

5.3. Results 
Experiments were performed for each of the three scaling functions. The following results were 
obtained: 

Scaling 
function 

Best C 
for 
RMSE 

1 – RMSE Accuracy (calibrated) 
Training Training 

(calibrated) 
Validation Validation 

(calibrated) 
Validation Best 

Threshold 
Rank 

atan 16 61.77% 62.13% 60.27% 60.52% 78.03% 0.5041 1 
binary 0.125 61.72% 62.1% 60.24% 60.49% 77.98% 0.5087 1 
log-lin 128 61.23% 61.58% 60.07% 60.34% 77.72% 0.5151 2 

5.3.1. 1 – RMSE 
For the 1 – RMSE performance metric, higher values are better. The calibrated scores for 1 – RMSE 
over the validation set for the three scaling functions are comparable, with a maximum difference of 
less than a quarter of a percent. Calibration always improved the RMSE, although only slightly. The 
baseline performance for 1 – RMSE is 34.12%. 

Changing C had only a negligible impact on the performance on the validation set. 

5.3.2. Accuracy 
The probability threshold for accuracy was optimized over the training set. The optimal thresholds 
on the calibration predictions are close to the defaults of 0.5. The learnt thresholds were then used 
to compute the accuracy on the validation set. Accuracy is not a useful metric by itself, since it 
assumes equal misclassification costs, and this assumption is rarely true. The observed accuracies 
are seen to be correlated with RMSE. The baseline for accuracy is 56.6%. 

McNemar’s Test was performed over the validation set to compare the three classifiers with each 
other and with the baseline. McNemar’s Test is a significance test for comparing two classifiers. It is 
used to accept or reject the hypothesis that they have the same error rate at a given significance 
level.[19] Based on the test, the classifiers trained over the atan and binary scaled data have the 
same error rate. The classifier trained over the log-lin scaled data has an error rate that is different 
from the others. 

The table below lists the computed chi-square statistics for all six pairs of classifiers, as were 
required for the tests. Values less than 3.84 imply the hypothesis that the two classifiers have the 
same error rate at significance 0.05. 

Classifier Baseline atan binary 
atan 57,380   
binary 57,424 1.01  
log-lin 56,173 202 106 
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5.3.3. Model selection 
For 1 – RMSE, the binary scaling function performed almost as good as the atan scaling function. 
Because the binary scaling function is simpler and needs half as many features as atan, it results in a 
faster prediction time. For these reasons, binary was chosen over atan. 

 

6. Analysis 

6.1. Learning curve 
Learning curves are used in machine learning to see the generalization performance as a function of 
the number of training examples. The curve is steeper for smaller training set sizes. In other words, 
the increase in performance is lesser for larger training set sizes.[20] 

The training set size was changed on a log scale from 101 to its full size of 106. Performance was 
measured on the entire validation set. Ten iterations were performed for each training set size 
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except the largest, in which case the full dataset was used. Training data was selected using simple 
random sampling without replacement. 

For the learning curve, calibration using isotonic regression was not applied, as this requires at 
least 1,000 training cases,[15] and these were not available for all instances of the training data. 
The value of C that previously yielded the best RMSE on the validation set without calibration (with 
binary scaling) was used. 

 

Error bars in the plot represent one standard deviation. 

It is observed that the learning method does indeed learn a better model when given increasing 
amounts of training data. As expected, the increase in performance is lesser for larger training set 
sizes. 

6.2. Reliability diagram 
The calibration of a classifier can be visualized through a reliability diagram.[17] To construct a 
reliability diagram, the prediction space is discretized into ten bins. Cases with a predicted value 
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between 0 and 0.1 fall in the first bin, between 0.1 and 0.2 in the second bin, etc. For each bin, the 
mean predicted value is plotted against the true fraction of positive cases. If the model is well 
calibrated the points fall near the diagonal line.[18] 

 

A reliability diagram was constructed over the validation set using the previously chosen model. 
The pre and post calibration points were plotted. As seen in the diagram, the points belonging to 
the calibrated classifier are closer to the diagonal. 

7. Thresholding 
Different approaches exist for selecting a threshold between 0 and 1 for classification. Predictions 
over the operating threshold are classified as belonging to the positive class, and the rest to the 
negative class. 
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7.1. ROC and PR curves 
Receiver Operator Characteristic (ROC) and Precision-Recall (PR) curves show different tradeoffs 
achieved by varying the threshold for classification. 

Terms Definition Interpretation 
TPR, sensitivity, recall TP/(TP+FN) Fraction of positives that are correctly classified 
FPR, fallout FP/(TN+FP) Fraction of negatives misclassified as positive 
Precision, PPV TP/(TP+FP) Fraction classified as positive that are truly positive 

 

The ROC curve shows false positive rate vs. true positive rate. PR curves show Recall vs. Precision, 
and are used in Information Retrieval. The goal of a learning algorithm is to be in the upper-left and 
upper-right corners of the ROC and PR curves respectively. The area under the curve (AUC) can be 
used as a metric for comparison of algorithms, with higher values being better. An algorithm that 
optimizes the area under the ROC curve (AUC-ROC) is not guaranteed to optimize the area under 
the PR curve (AUC-PR).[21] 

 

While the model was not directly optimized for AUC-ROC or AUC-PR, their values were measured 
for the selected model over the validation set. These were observed to be 84.73% and 80.46% 
respectively. 

7.2. Cost analysis 
The essence of cost-sensitive decision-making is that it can be optimal to act as if one class is true 
even when another class is more probable. For example, it can be rational not to approve a large 
credit card transaction even if the transaction is most likely legitimate.[22] As stated earlier, it is 
believed that a false positive would have a higher cost than a false negative in any practical 
application of the learning algorithm for this classification problem. The following cost matrix is 
proposed: 
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 actual negative actual positive 
predicted negative c00 = 0 (true-negative cost) c01 = 1 (false-negative cost) 
predicted positive c10 >1 (false-positive cost) c11 = 0 (true-positive cost) 

 

This cost matrix meets the reasonableness condition for cost matrices, namely, that the cost of 
labeling an example incorrectly should always be greater than the cost of labeling it correctly.[22] 
Given the proposed cost matrix, effectively, only the ratio of the two misclassification costs in it is 
uncertain. With , multiple values for  can be considered. 

The optimal prediction is the positive class if and only if the expected cost of this prediction is less 
than or equal to the expected cost of predicting the negative class.[22] Given , the 
theoretical threshold for making an optimal decision on classifying instances as positive is 

. In practice however, an empirically derived threshold yields a lower cost than the 
theoretical threshold. The validation set can be used to search for this empirical threshold.[16] 
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Given the suggested cost matrix with an uncertain false-positive cost, values from 1 to 50 for the 
false-positive cost were plotted on a log scale against the respective theoretical and empirical 
thresholds. It is observed that the empirical threshold is consistently higher than the theoretical. 
For false-positive costs greater than 30, the empirical threshold is 1, and therefore the model would 
not be discriminative for those costs. 

8. Evaluation on test set 
The selected model, i.e. with binary scaling, C = 0.125, and calibration, was evaluated on the test set. 
Accuracy was computed using the previously selected threshold of 0.5087. The following results 
were obtained: 

1 – RMSE Accuracy AUC-ROC AUC-PR 
60.47% 77.88% ± 0.15% (99% CI) 84.72% 80.32% 

8.1. Confusion matrix 
Given the previously suggested cost matrix, along with a supposed false-positive cost of 4, the 
empirical threshold for this specific cost matrix was previously observed to be 0.808. 

A confusion matrix is a contingency table showing the differences between the true and predicted 
classes for a set of labeled examples.[23] The following is the confusion matrix for the 
aforementioned threshold on the test set, with values expressed as percents: 

 actual negative actual positive sum 
predicted negative 53.84% 25.44% 79.28% 
predicted positive 2.82% 17.91% 20.72% 
sum 56.65% 43.35%  

9. Conclusions 
The L2-regularized logistic regression model with binary scaling, C = 0.125 and calibration using 
isotonic regression was the preferred model on the English Wikipedia vandalism prediction 
dataset. 

New words are continually introduced into the Wikipedia corpus, and a failure to capture their 
predictive potential may lead to suboptimal predictions. The obvious solution to this concern is of 
course to retrain the model frequently with up-to-date data. More generally, the extent to which 
concept drift, i.e. a change over time in the statistical properties of the target variable, may exist in 
the data is unknown, and is a topic for future study. 

Because there is very limited overfitting of the model to the training set, the entire dataset of 
2,000,000 cases can be used to train a model using the previously estimated optimal parameters. 
Given sufficient memory, a further marginal improvement in performance should be possible by 
parsing and utilizing the entire corpus of several million cases. 
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Other learning methods such as linear SVM or Random Forests with calibration may perform 
better.[11] Using an ensemble method such as Random Forests will result in a slightly longer 
prediction time, however, despite opportunities for parallelization. Nonlinear SVM kernels are not 
believed to be feasible or useful for a dataset of this size. 
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